2022年《认识分式》教学反思范本
下面是小编为大家整理的2022年《认识分式》教学反思范本,供大家参考。
《认识分式》教学反思范文
作为一名人民老师,课堂教学是我们的任务之一,借助教学反思可以快速提升我们的教学能力,来参考自己需要的教学反思吧!以下是小编为大家收集的《认识分式》教学反思范文,希望对大家有所帮助。
今天我们八年级数学组同课异构的题目是《认识分式》。
刚开始接触到这个课时,我觉得非常简单。知识点很少,思路也清晰。首先认识什么是分式?然后辨析分式的特点。接着类比分数讲解何时分式有意义?何时分式无意义?何时分式值为零?但是在写教案进行自己的教学设计时,我就为难了。不知道该怎么新颖的导入,上周我们到先学习了思维导图,所以我想带着学生们画分数的思维导图,并让学生们类比分数的思维导图绘制分式的思维导图。在画完思维导图后,该丰富分式的背景了,课本上的引入是一个防风固沙问题。
我再设计问题时,没有很好的分析学生,将简单的问题复杂化,带着学生们分析题目中的数量关系。找数量关系固然重要,但是这是一致的难点,放在这儿不合适,整节课在一开始带偏了节奏,让学生感觉一开始就头很重,造成分式引出花费了很多时间,效果也不好。主要还是自己想当然,思路不够清晰。在课堂上我总是自己总结,自己说。生怕学生们错过了重要的知识点,但是这样做不会让学生们理解知识,只是单纯的记住。自己很费劲,一直强调强调,而学生们呢云里雾里,并不理解。在分式的判别上,因为前面占据了很多时间,没有带学生们进行几个特例的分析。
在听了其他几个老师的课后,我发现刘琼老师对整节课的设计很新颖,并且站在学生中又站在学生外,知识的脉络清晰,学生掌握的也好。对比之下,更是让自己感到惭愧。自己的差距还很大,必须认真教学,认真备学生,认真进行自己的教学设计分析。充分理解学生的思维困惑,不重复不啰嗦。
我采取的教学方法是引导发现教学法:用数、式通性的思想,类比分数。引导学生独立思考、小组合作,完成对分式概念及意义的自主探索,突出数学合情推理能力的养成;
通过“课后练习应用拓展”这一环节发展了学生思维,巩固了课堂知识,增强了学生实践应用能力。通过导学案让学生自己阅读课文,然后提出问题让学生解决,问题由易到难,层层深入,既复习了旧知识又在类比过程之中获得了解决新知识的途径,学生感到数学知识原来就这么简单。我在这一环节提问问题注意了循序性,先易后难、由简到繁、层层递进,台阶式的提问使问题解决水到渠成。
通过《认识分式》这节课的教学我对大家说的这两句话认识非常深刻。
一是:只要你给学生创造一个自由活动的空间,学生便会还给你一个意外的惊喜。
二是:学生的潜力是无穷的,只有我们想不到,没有学生做不到的。
本节课的缺点,我认为有:
一是在体现数学的实用价值方面不到位。
二是我本人普通话不是很好。
三是在因材施教方面做得还不到位,对学困生的照顾做的`不是很好,课后的“拓展应用”对学困生来说就有相当大的困难,在这一环节没有呈现出梯度性。
《认识分式》课程设计的思路是,从几个实际问题入手,让学生列出一些代数式,从中发现一种不同于整式但又类似于分数的一类代数式。通过独立思考、小组讨论归纳出共同特点从而形成分式概念。接着通过练习辨析概念,让学生明白整式与分式的联系和不同,注意其中常见易混淆之处。接着处理分式有意义、分式值为零的情况,突破方式是练习、纠错、总结。
不足之处:
第一是学生讨论环节并不是很有效,在引导学生形成概念时语言不够精准,表达不够明确,导致时间有所耽误。
第二是没有让学生板演,展示。个别提问的少,集体回答的多,难免有混过去的学生。
第三是分式值为零的条件讲解时有些生硬,这一部分还是要让学生理解,才能在解决问题时不与分式有意思无意义的条件混淆。
这在遇到检测第6题时有明显的感觉,学生并不能很好的接受这个分式总是有意义,这是下一节课需要补充的。
通过本周的教学,学生已基本掌握了分式的有关知识,并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。下面是我在教学中的几点体会:
一、深挖教材,合理渗透数学思想方法,培养学生各种能力。
本章可以让学生通过观察、类比、猜想、尝试等活动学习分式的运算法则,发展他们的合情推理能力,所以教学时重点应放在对法则的.探索过程上。一定要让学生充分活动起来。在观察、类比、猜想、尝试当一系列思想活动中发现法则、理解法则、应用法则,同时还要关注学生对算理的理解,以培养学生的代数表达能力、运算能力和有理的思考问题能力。可是我在知识的传授上并没有注重探索、类比法则,而重在对分式四则运算法则的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。今后要避免类似事情的发生。
二、着力体现建构主义思想,展现数学的连续性与延展性。
本部分内容应建立在学生对分数的认识的基础上,通过已有的知识进行建构,适当的对比能极大提高学生的认知质量。
分式运算是代数恒等变形的基础之一,但是不能盲目的加大运算量与题目的难度,重点应放在对运算过程推理的理解上。
幂的运算,前期已经掌握了正整数指数幂的运算,本次应拓展到整数指数幂的运算,注意衔接过程。
另外,对《教材》上关于分式的具体问题一定要重视,并关注学生在这些具体活动中的投入程度,看他们能否积极主动地参与,其次看学生在这些活动中的思维发展水平——能否独立思考,能否用数学语言表达自己的想法,能否反思自己的思维过程,进而发现新的问题。
在本课的教学过程中,我认为应从这样的几个方面入手:
1、分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件:
⑴方程式里必须有分式。
⑵分母中含有未知数。
这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。
2、分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
3、本节课的关键是如何过渡,究竟是给学生一个完全自由的空间还是让学生在老师的引导下去完成,“完全开放”符合设计思路,符合课改要求,但是经过教学发现,学生在有限的时间内难以完成教学任务,因此,先讲解,做示范,再练习更好些。
推荐访问:分式 范本 反思 《认识分式》教学反思范本 《认识分式》教学反思范文 认识分式的教学反思
上一篇:2022课文一分钟优秀教学反思